Reading Remember


Link

Project

  1. Blindness Detection using Image Classification
  2. Generating New Artworks using GANs
  3. Bounding Box Prediction using PyTorch
  4. Classifying Environment Audio Recordings

  5. K-Means Clustering

Sometimes, an unsupervised learning technique is preferred. Perhaps you do not have access to adequate training data, or perhaps the training data’s labels are not completely clear. Maybe you just want to quickly sort real-world, unseen, data into groups based on its feature similarity.

In such cases, clustering is a great option!

Notes on Music Information Retrieval

  1. Hogwarts Housing with Logistic Regression

Sorting Hat in Harry Potter and the Philosopher’s Stone

Tricks

Examples

>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0],
...                    [3, 4, np.nan, 1],
...                    [np.nan, np.nan, np.nan, 5],
...                    [np.nan, 3, np.nan, 4]],
...                   columns=list('ABCD'))
>>> df
     A    B   C  D
0  NaN  2.0 NaN  0
1  3.0  4.0 NaN  1
2  NaN  NaN NaN  5
3  NaN  3.0 NaN  4

Replace all NaN elements with 0s.

>>> df.fillna(0)
    A   B   C   D
0   0.0 2.0 0.0 0
1   3.0 4.0 0.0 1
2   0.0 0.0 0.0 5
3   0.0 3.0 0.0 4

Examples

>>> df = pd.DataFrame([('bird', 389.0),
...                    ('bird', 24.0),
...                    ('mammal', 80.5),
...                    ('mammal', np.nan)],
...                   index=['falcon', 'parrot', 'lion', 'monkey'],
...                   columns=('class', 'max_speed'))
>>> df
         class  max_speed
falcon    bird      389.0
parrot    bird       24.0
lion    mammal       80.5
monkey  mammal        NaN

When we reset the index, the old index is added as a column, and a new sequential index is used:

>>> df.reset_index()
    index   class  max_speed
0  falcon    bird      389.0
1  parrot    bird       24.0
2    lion  mammal       80.5
3  monkey  mammal        NaN

Waiting to Read


文章作者: Terence Cai
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Terence Cai !
  目录